CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation
نویسندگان
چکیده
A robust automatic micro-expression recognition system would have broad applications in national safety, police interrogation, and clinical diagnosis. Developing such a system requires high quality databases with sufficient training samples which are currently not available. We reviewed the previously developed micro-expression databases and built an improved one (CASME II), with higher temporal resolution (200 fps) and spatial resolution (about 280×340 pixels on facial area). We elicited participants' facial expressions in a well-controlled laboratory environment and proper illumination (such as removing light flickering). Among nearly 3000 facial movements, 247 micro-expressions were selected for the database with action units (AUs) and emotions labeled. For baseline evaluation, LBP-TOP and SVM were employed respectively for feature extraction and classifier with the leave-one-subject-out cross-validation method. The best performance is 63.41% for 5-class classification.
منابع مشابه
Objective Classes for Micro-Facial Expression Recognition
Micro-expressions are brief spontaneous facial expressions that appear on a face when a person conceals an emotion, making them different to normal facial expressions in subtlety and duration. Currently, emotion classes within the CASME II dataset are based on Action Units and self-reports, creating conflicts during machine learning training. We will show that classifying expressions using Acti...
متن کاملSpontaneous subtle expression detection and recognition based on facial strain
Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting a...
متن کاملSpontaneous Facial Micro-Expression Recognition using Discriminative Spatiotemporal Local Binary Pattern with an Improved Integral Projection
Recently, there are increasing interests in inferring mirco-expression from facial image sequences. Due to subtle facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial micro-expression recognition. Recent works usually used spatiotemporal local binary pattern for micro-expression analysis. However, the commonly used spatiotemp...
متن کاملEfficient Spatio-Temporal Local Binary Patterns for Spontaneous Facial Micro-Expression Recognition
Micro-expression recognition is still in the preliminary stage, owing much to the numerous difficulties faced in the development of datasets. Since micro-expression is an important affective clue for clinical diagnosis and deceit analysis, much effort has gone into the creation of these datasets for research purposes. There are currently two publicly available spontaneous micro-expression datas...
متن کاملLess is more: Micro-expression recognition from video using apex frame
Despite recent interest and advances in facial micro-expression research, there is still plenty room for improvement in terms of micro-expression recognition. Conventional feature extraction approaches for micro-expression video consider either the whole video sequence or a part of it, for representation. However, with the high-speed video capture of micro-expressions (100-200 fps), are all fra...
متن کامل